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ABSTRACT

Morphine is effective in managing moderate to severe pain, but its chronic use can
lead to analgesic tolerance, a phenomenon of complex underlying neuroadaptive and
biochemical changes not yet fully elucidated. The nucleus accumbens (NAc) is one of
the brain regions known to be involved in the development of morphine tolerance. In
the present study we aimed to examine the NAc proteome as a function of morphine
tolerance in Lanyu miniature pigs (Sus scrofa domesticus). The morphine group and the
control group each consisted of 6 animals. Analgesic tolerance in the morphine group
was induced by intrathecal injection of morphine hydrochloride 75 pg/kg twice daily for
10 days, while saline was injected in the control group. The development of morphine
tolerance was assessed by measuring the response time to a thermal stimulation.
Two-dimensional difference in gel electrophoresis (2D-DIGE) was used to compare the
abundance of NAc proteins between the two groups. Among ~750 protein spots
subjected to statistical analysis, 22 spots showed a significant change (P < 0.05) in
abundance. These de-regulated proteins were further identified using liquid
chromatography tandem mass spectrometry (LC-MS/MS) followed by database
interrogation. Proteins that were up-regulated in the morphine group included soluble
epoxide hydrolase and eukaryotic elongation factor 1 y-like protein, whereas proteins
that were down-regulated included calcineurin catalytic subunit § isoform, heat shock
60kDa protein, o-internexin and creatine kinase B-type. These findings may help clarify

the interplay of molecular events involved in opioid tolerance.

Keywords: morphine; drug tolerance; nucleus accumbens; Sus scrofa domesticus;
proteomics; 2D-DIGE
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Chapter 1
INTRODUCTION

1.1 Background and purpose

Morphine, one of the most potent analgesics, is used to manage moderate to severe
pain from a wide variety of clinical entities. Its prolonged use, however, is complicated
with side effects such as analgesic tolerance. Tolerance is considered to be the results of
complex adaptive and biochemical changes that take place in the central nervous system
(CNS), but the precise mechanisms underlying this neuroplasticity[1] are not fully
understood and warrant further investigation. It is believed that the nucleus accumbens
(NAc), a part of the mesolimbic dopamine system (MDS), is one of the brain loci

associated with the pathogenesis of opioid tolerance.[2,3]

Opioid tolerance is so complex that it involves dynamic interplay between a
diversity of signaling components; besides, tolerance mechanisms may be contingent on
ongoing cellular physiology.[4] Traditional approaches in neuroscience are
hypotheses-based methods that examine only one or several proteins at a time, but
proteomics approach, a screening technology and open discovery method, can profile
large numbers of global, concurrent protein changes associated with opioid tolerance

and may provide novel protein targets for further studies in this field.[5]

To identify differential expression of the NAc proteins causally related to
morphine tolerance, we used a pig model of intrathecal morphine-induced
antinociceptive tolerance and examined the NAc proteome by two-dimensional
difference in gel electrophoresis (2D-DIGE) followed by identification of differentially
expressed proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS).

Some de-regulated proteins were verified by Western blotting.



1.2 Morphine tolerance and NAc

Morphine analgesic tolerance denotes diminished analgesic efficacy with repeated
morphine use so that progressively higher doses are needed to achieve the same
analgesic effect.[6-8] This phenomenon potentially limits the clinical usability of
morphine. Genetic polymorphism may explain the wide inter-individual variability in

the manifestations of morphine tolerance.[9]
Possible molecular mechanisms involved in opioid tolerance include:[9-11]

(a) Receptor tolerance that involves desensitization and subsequent internalization

of the opioid receptors;

(b) Cellular tolerance that involves adenylate cyclase—cyclic AMP (cAMP)—protein
kinase A—cAMP response element-binding protein (CREB), mitogen-activated protein

kinases (MAPK) or protein kinase C cascades;

(¢) System tolerance that involves “anti-opioid” systems (such as
N-methyl-D-aspartate (NMDA) receptor[1,3] and nitric oxide synthase) and changes in

glial function;

(d) Synaptic plasticity represented by processes of long-term potentiation and
long-term depression that involve changes in
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits at

synapses.

The reinforcing effects of morphine and other drugs of abuse are believed to be
mediated by the MDS, where the dopaminergic neurons in the ventral tegmental area
(VTA) project primarily to the NAc (also called the ventral striatum).[8,12-16] There
have been numerous studies supporting the NAc as a site of opioid rewarding
actions,[14,17] which have been associated with changed neuronal microstructure,[18]
decreased surface expression of AMPA receptors[19] and increased extracellular
dopamine concentrations,[17] for example, in the NAc. In fact, the NAc is considered a
site where the reinforcing effects of most (possibly all) drugs of abuse converge.[2]

That is why the NAc was chosen as the target of proteomic analysis in the present study.



1.3 Animal model

Most of the animal studies on morphine tolerance have been done in rodents
because of expense considerations and convenience of including more biological
replicates. On the other hand, pigs have long been recognized as ideal experimental
animals in biomedical research[20,21] and offer several advantages. First, compared
with rodents, they are more similar to humans in anatomy, physiology, and
metabolism;[20,22] second, their brains are large enough for easy localization and
retrieval of specific brain nuclei; third, the cost of procurement and maintenance is
modest compared to that of primates. Moreover, it has been shown that systemic
morphine induces tolerance to antinociception in domestic pigs,[22] and a stereotaxic
atlas of the pig brain has been published[23] that served as reference to the procurement

of the NAc in the present study.

The Lanyu miniature pigs (Sus scrofa domesticus) were used as the experimental
animals in the present study. They are an indigenous breed from Lanyu Islet (Orchid
Island) situated off the coast of southeastern Taiwan. They have a narrow and straight
head with long straight snout and small erect ears as well as a small body and coarse
dark hair. Two herds of indigenous Lanyu pigs were moved from Lanyu Islet to Taiwan
decades ago and have been reared separately by National Taiwan University and the
Taitung Animal Propagation Station (TAPS), both for conservation and development of
a laboratory pig breed.[24,25] There have been 6 journal articles (all from Taiwan) that

used the Lanyu miniature pigs as the experimental animals.[24-29]

In the present study, intrathecal rather than systemic administration of morphine
was chosen to induce morphine tolerance in the Lanyu miniature pigs. The intrathecal
route theoretically simplifies the pharmacokinetic profile and circumvents the
blood-brain barrier, which confounds the central bioavailability of systemic
morphine;[30] its drawback, however, is technical difficulty in placing an intrathecal

catheter.



1.4 Proteomics

The word “proteome” (protein complement to a genome) was coined by Wilkins et
al. in 1994; Wilkins introduced the concept of proteome at the First Siena conference
themed “2D electrophoresis: from protein maps to genomes” later in the same year.[31]
“Proteome” is the collection of all the proteins expressed by a genome within a
particular cell, tissue, organ or organism at a particular time.[32] Proteomics is the study

of the proteome in a holistic manner.

The advent of new concepts and development of technology have transformed
traditional protein chemistry into modern, highly complex proteomics.[31] In the past
decade, there have been tremendous advances in proteomic technologies. Several
sophisticated technologies including two-dimensional electrophoresis (2-DE), imaging,
mass spectrometry (MS), and bioinformatics make possible the simultaneous separation
of hundreds or thousands of peptides/proteins and their further quantification and

characterization.[33] A typical proteomic workflow includes:[34]
(a) Sample collection and storage;

(b) Sample preparation, prefractionation and separation (by molecular weight

(MW), isoelectric point (pl), or chemical affinity of each protein);
(c) Protein quantification and characterization by MS;
(d) Bioinformatics for identification of proteins or biomarkers.

Clinical proteomics, the application of proteomics techniques to the medical field,
aims to identify proteins involved in the pathogenesis of a specific disease state. This
approach has the potential to identify biomarkers that allow the diagnosis or treatment

of the disease.[33,35,36]

There are inherent limitations in the proteomics approach, however, such as the
difficulties in detection of proteins of low abundance, hydrophobic proteins or proteins

with extreme pl or MW.[37]



1.5 Two-dimensional difference in gel electrophoresis
(2D-DIGE)

A common combination of proteomic technologies for separation and
identification of proteins is 2-DE coupled with MS. 2-DE, the long-time standard for
protein separation, was first described in 1975.[38] It separates protein mixtures in two
steps: in the first dimension (isoelectric focusing (IEF)), proteins are separated
according to their pl along a pH gradient generated by a pre-cast immobilized pH
gradient (IPG) strip; in the second dimension, proteins are resolved according to their
MW.[39] Traditional 2-DE allows simultaneous visualization of large portions of the
proteome, but it suffers from the requirement of multiple gels, gel-to-gel variations,

poor reproducibility and unreliable quantitative capabilities.[5,40]

In 1997 Unli et al. first describe 2D-DIGE.[41] 2D-DIGE builds on 2-DE
technique but comes with improved accuracy and reproducibility. This technique allows
separation of more than one protein extracts on the same 2D gel (multiplexing) thanks
to the use of fluorescent dyes (CyDye DIGE fluors) that are spectrally resolvable as
well as mass- and charge-matched. Two protein extracts are prelabeled with either Cy3
or Cy5, mixed, and run on a single 2D gel. A third dye Cy2 allows labeling of a
reference sample (the pooled internal standard) that are made up of equal amounts of all
biological samples in an experiment and co-electrophoresed with Cy3- or CyS5- labeled
protein extracts on each 2D gel. The pooled internal standard acts as a baseline for
inter-gel comparisons of protein abundance. The proteins are then visualized using a
fluorescence scanner; the images are quantified and statistical analysis is done using

DeCyder program.[40]
Compared to traditional 2-DE, 2D-DIGE has the following advantages:[40,42,43]
(a) Accurate quantification;
(b) Multiplexing, which translates to less gel-to-gel variations;
(c) Comparable or better sensitivity;

(d) Feasibility of advanced statistics such as multivariate analysis.



With so many advantages, 2D-DIGE has become “the new gold standard for 2-D
gel electrophoresis.”[42] But it is not without drawbacks:[5]

(a) Expensive dyes and equipment;

(b) The possibility that proteins with low lysine content will be labeled less
efficiently.
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Chapter 2
MATERIALS AND METHODS

2.1 Overview

The flowchart of the present study is depicted in Figure 1.

2.2 Study approval and guidelines

The study was approved by the Institutional Animal Care and Use Committee of
Chi Mei Medical Center, Tainan, Taiwan and followed the guidelines established by the

National Science Council of Taiwan.

2.3 Animals

Twelve Lanyu miniature pigs of both genders, weighing 18-22 kg and aged 34
months, were purchased from the TAPS, Taiwan Livestock Research Institute, Taitung,
Taiwan. Animals were housed in a climate-controlled room (maintained at 25 °C) with
natural lighting, ad libitum access to water, and twice daily feedings of standard pig
chow. Animals were reared individually while allowed nose-to-nose contacts with those
in adjacent pens. Animals were allowed a habituation period of at least 7 days before

the initiation of the following procedures.

11
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Figure 1 Flowchart.
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2.4 Implantation of intrathecal catheters

All of the animals were anesthetized with intramuscular injection of
tiletamine-zolazepam (Zoletil 50) 50—-100 mg along with atropine 1 mg. Intravenous
access was established by cannulating an auricular vein. Animals were placed in the
lateral decubitus position with the neck flexed. Cisterna magnum puncture was done
under aseptic conditions using a Tuohy epidural needle (Perican 18G x 80 mm; B.
Braun, Melsungen, Germany) and loss-of-resistance method carefully to avoid damage
to the underlying nervous structures. An epidural catheter (Perifix Standard 20G x 100
cm; B. Braun) was then advanced in the caudad direction through the epidural needle
into the subarachnoid space with 8 cm of the epidural catheter past the distal extent of
the needle, which was then removed. The epidural catheter was secured with silk
sutures and tapes. Throughout the procedure, supplemental tiletamine-zolazepam in
combination with thiopental was given intravenously as required. Animals were then

allowed a 1-day recovery period.

2.5 Evaluation of morphine analgesic tolerance

To measure nociceptive responses in animals in a pen situation, a portable,
high-intensity light-powered thermal stimulating device similar to that described by
Risdahl et al.[22] was held 24 cm away from the animals to measure the latency time
(in seconds) needed for the emitted heat to elicit cutaneous trunci reflex (CTR) in the
animals. CTR was measured at the same location on the flank of each animal. A cutoff

time of 40 s was used to avoid skin burns of the animals.

Morphine solution for intrathecal injections was prepared by dissolving
preservative-free morphine hydrochloride powder (obtained from the National Bureau
of Controlled Drugs, Taipei, Taiwan) in normal saline to achieve a concentration of 2

mg ml™". The solutions were sterile-filtered and stored in colored Eppendorf tubes.

Twelve animals were divided into two groups. On day 1 of intrathecal injection,
baseline latency for thermal stimulation to elicit CTR was measured in both groups in
the morning before feeding. Then animals in the morphine group (n = 6) were injected
morphine 75 pg/kg followed by saline 1 ml intrathecally, whereas those in the control

group (N = 6) received an equivalent volume of intrathecal saline instead of morphine.

13



Intrathecal injection was repeated 8 h later in the afternoon. On days 2—10, morphine
and/or saline administration was the same as that on day 1; CTR latency was measured
1 h after intrathecal injection in the morning. On day 11, CTR latency was measured,
then morphine 75 pg/kg followed by saline 1 ml was injected intrathecally in both
groups for morphine challenge. CTR latency was measured (at 15-min intervals until
120 min after morphine injection) to evaluate the effect of morphine challenge; the area
under the curve (AUC) of CTR latency was calculated to evaluate morphine

analgesia.[3]

2.6 NAc procurement

Anesthetic procedures were similar to those for implantation of intrathecal
catheters, except that animals were orotracheally intubated, paralyzed with intravenous
rocuronium, and mechanically ventilated. The intrathecal catheter was removed.
Bilateral carotid arteries and jugular veins were surgically exposed to prepare for brain
perfusion. Potassium chloride 40-80 mEq was injected into one of the jugular veins
until the electrocardiograph showed cessation of cardiac activity. The brain was infused
via the carotid artery with 2500-3000 ml of ice-cold normal saline. Animals were
extubated, decapitated and the brain removed en bloc. The brain was cut into 2
hemispheres on ice and immersed in liquid nitrogen for 2 min to harden it. Each brain
hemisphere was cut from the midline laterally into 3-mm sagittal sections with a slicer
(Topaz 195; Sirman, Pieve di Curtarolo, Italy). NAc was identified using lateral
ventricle and optic chiasma as landmarks,[23] and the dissected NAc tissue was stored

in liquid nitrogen awaiting further processing.

2.7 Preparation of NAc protein lysates

Isolated pig NAc tissues were ground under liquid nitrogen in mortar and then
transferred to centrifuge tubes containing the appropriate amount of lysis buffer [7 M
urea, 2 M thiourea, 4% CHAPS, 1 mMm EDTA, 1 mm PMSF, 100 U/ml aprotinin, 100
mM DTT and 1 tablet of Complete Mini protease inhibitor cocktail tablet (Roche
Diagnostics, Indianapolis, IN, USA) per liter]. The samples were then processed by
sample grinding kit (GE Healthcare, Piscataway, NJ, USA) according to the protocol
provided by the manufacturer, followed by centrifugation at 14 000 g for 20 min. The
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supernatant was collected and centrifuged again at 320000 g in an Optima
ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). After centrifugation, the
supernatant was cleaned with 2-D Clean-Up Kit (GE Healthcare) and the protein pellet

was dissolved in rehydration buffer for electrophoresis.

2.8 2D-DIGE

For DIGE minimal labeling, 33 pg of proteins were mixed with 264 pmol CyDye
(GE Healthcare) by vortexing and incubated on ice in the dark for 30 min. Proteins
extracted from the two animal groups were labeled with either Cy3 or Cy5 using a dye
swapping strategy (Table 1) as follows: in gels 1-3, proteins from the control group
were labeled with Cy3, and proteins from the morphine group were labeled with Cy5; in
gels 4-6, Cy3 and Cy5 were interchanged. To make up 33 ug of the pooled internal
standard bulk-labeled by Cy2, 2.75 ng of proteins from each of 12 lysates, which were
prepared from 6 pairs of morphine-treated/control pigs, were pooled together. In all
three cases the labeled sample was then quenched by the addition of 1 pul 10 mMm lysine
(Sigma-Aldrich, St. Louis, MO, USA) followed by incubation on ice for a further 10
min. Before the first-dimension IEF, a 33 pg aliquot from each of three labeled mixes
(Cy3, Cy5 and Cy2-labeled) were combined with the rehydration buffer (7 M urea, 2 M
thiourea, 4% CHAPS, 2% DTT, 0.5% IPG buffer and trace amount of bromophenol
blue) that covered the pH 47 interval of the IPG strips, to give a final volume of 320 pl.
In-gel rehydration of the 18 cm IPG strip (GE Healthcare) with the 320-ul rehydration
buffer containing the protein sample was performed at 20 °C in the dark for 16 h. The
proteins were then focused at 20 °C at 200 V, 500 V, 1000 V, 5000 V and 8000 V with
a total of 81 734 Vh using IPGphor electrophoresis unit (GE Healthcare). After IEF, the
gel strips were equilibrated in equilibration buffer (0.5 M Tris-HCI (pH 8.8), 6 M urea,
30% glycerol, 2% SDS) containing 1% DTT for 15 min and then in equilibration buffer
containing 4% iodoacetamide for a further 30 min. The equilibrated gel was loaded onto
the top of a 10% acrylamide gel and sealed with 0.5% agarose. The proteins were
separated at 420 V using Bio-Rad Protean IIxi (Bio-Rad, Hercules, CA, USA) until
bromophenol blue reached the bottom of the gel.
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Table 1 Experimental design.

Gel number Cy2 Cy3 Cy5
1 Pooled internal standard | Control 1 | Morphine 1
2 Pooled internal standard | Control 2 | Morphine2
3 Pooled internal standard | Control 3 | Morphine 3
4 Pooled internal standard | Morphine4 | Control 4
5 Pooled internal standard | Morphine5 | Control 5
6 Pooled internal standard | Morphine6 | Control 6

2.9 Gel image analysis

The gels were scanned with a Typhoon 9400 fluorescence scanner (GE Healthcare).
Image analysis was performed by DeCyder 5.01 program (GE Healthcare). The
differential in-gel analysis (DIA) mode of DeCyder was implemented for spot detection
and normalization of the control and morphine-treated gel images to the internal
standard. After spot detection, the abundance of each spot was shown by normalized
volume (Cy3/Cy2 or Cy5/Cy2), represented by the ratio of the control or
morphine-treated sample (Cy3 or CyS5) to the internal standard (Cy2). In DIA spot
detection, volume < 30 000 was used for spot filtering. Using the DeCyder biological
variation analysis (BVA) mode, spot matching and abundance comparison was
performed in automatic mode, and the average ratio and Student’s t-test value for each
protein spot were calculated based on all the gel images (morphine : control, n = 6 per
group). The protein spot matches and differential abundances were confirmed by
visualization for all the gels. Moreover, the differentially expressed proteins with

statistical significance were further assessed by the three-dimensional spot profiles.

2.10 In-gel digestion

The in-gel digestion was performed as described previously.[35] In brief, the spots
excised from the gel were incubated in a solution containing 15 mM of potassium
ferricynate and 50 mM sodium thiosulfate until the brownish color disappeared. The

destained gel piece was washed with 25 mM ammonium bicarbonate for 10 min and
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then with 25 mM ammonium bicarbonate/50% (v/v) acetonitrile for 10 min. After
drying in SpeedVac (Thermo Savant, Milford, MA, USA), the gel was incubated with
50 pl of 2% (v/v) 2-mercaptoethanol in darkness for 20 min, an equal volume of 10%
(v/v) vinylpyridine in 25 mM ammonium bicarbonate/50% (v/v) acetonitrile was added,
and the gel was incubated further for 20 min. Then the gel was washed three times with
25 mM ammonium bicarbonate and dehydrated in 25 mM ammonium bicarbonate/50%
(v/v) acetonitrile. The gel was dried and treated with 50 ng of modified trypsin (GE
Healthcare) in 100 pl of 25 mM ammonium bicarbonate at 37 °C overnight. The
supernatant was collected after digestion and the gel was extracted with 200 pl of 0.1%
(v/v) formic acid. The extracts were combined and dried in SpeedVac and resuspended

in 0.1% (v/v) formic acid immediately for MS analysis or stored at —20 °C until use.

2.11 Protein identification analysis via LC-MS/MS

The protein digest was analyzed in LTQ-Orbitrap hybrid tandem mass
spectrometer (Thermo Fisher, Waltham, Massachusetts, USA) in-line coupled with
Agilent 1200 nanoflow HPLC system equipped with LC Packing C18 PepMap 100
(length: 5 mm; internal diameter: 300 pm; bead size: 5 um) as the trap column and
Agilent ZORBAX XDB-C18 (length: 50 mm; internal diameter: 75 pum; bead size: 3.5
um) as the separating column (Agilent Technologies, Santa Clara, CA, USA). File
Converter in Xcalibur 2.0SR package (Thermo Fisher) and an in-house program were
used to extract the MS/MS information as well as to compute the charge and mass for
each analyzed peptide. TurboSequest program (ver. 27, rev. 11) was then used to search
the best matched peptides from a non-redundant (NR) protein database whose FASTA
sequences were downloaded from National Center for Biotechnology Information

(NCBI, ftp://ftp.ncifcrf.gov/pub/nonredun/). While only the tryptic peptides with = 2
missed cuts were considered, the mass ranges during the database search were 1 and 3.5
m/z for fragment and precursor ions, respectively. The protein identities were verified
only when there were at least two peptides matched and both search results had high
Xcorr (i.e. = 2.0 for doubly charged peptides and = 3.0 for triply charged ones) and

with minimal differences between observed and hypothetical masses (i.e. AM <10

ppm).
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2.12 Western blotting

After isolated pig NAc tissues were ground under liquid nitrogen in mortar, the
proteins were lysed in the sample buffer (0.1 M Tris, pH 6.8, 2% SDS, 0.2%
B-mercaptoethanol, 10% glycerol and 0.0016% bromophenol blue). Total cell lysates
(50 g of protein) were separated using 10% acrylamide gel electrophoresis and
transferred onto the PVDF membrane (Stratagene, La Jolla, CA, USA). The membrane
was blotted with primary antibodies overnight followed by incubation with horseradish
peroxidase-conjugated secondary antibodies (1:15 000) and visualized using
chemiluminescence (GE Healthcare). Primary antibodies against internexin neuronal
intermediate filament protein a (a-internexin), creatine kinase B-type (CK-B) and
elongation factor tu (EF-Tu) were from Santa Cruz Biotechnology (Santa Cruz, CA,
USA; a-internexin (2E3) (Ref. sc-58478), creatine kinase-B (N-20) (Ref. sc-15157) and
EF-Tu (CBP-KK1) (Ref. sc-21758)). Primary antibodies against calcineurin catalytic
subunit (CaN A) were from Cell Signaling Technology (Danvers, MA, USA;
pan-calcineurin A antibody #2614). Primary antibodies against heat shock 60kDa
protein (hsp60) were from Calbiochem (San Diego, CA, USA; anti-hsp60 mouse mAb

(LK-1)).

2.13 Statistical analysis

Student’s t-test was used in the DeCyder BVA mode to compare the normalized
abundance of matched protein spots between morphine and control groups. Otherwise,
SPSS 17 for Windows (SPSS Inc., Chicago, IL, USA) was used for data analysis;
comparisons between morphine and control groups were performed using the
Mann-Whitney U test. Data were expressed as mean + standard error of the mean. P <

0.05 was considered as significant.
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Chapter 3
RESUTLS

3.1 Development of morphine tolerance

Morphine analgesic tolerance was demonstrated in Lanyu miniature pigs
administered intrathecal morphine 75 pg/kg twice daily for 10 days. Morphine increased
the latencies for thermal stimulation to elicit CTR on days 2-6 of morphine
administration, but this analgesic effect did not persist to days 7-11 (Figure 2a).
Moreover, on day 11 of intrathecal drug administration, the analgesic effect of
morphine challenge, as represented by AUC of time course (Figure 2b), was
significantly attenuated in the morphine group (AUC = 886.43 + 28.18) compared to the
control group (AUC =3177.06 + 84.04, P = 0.004).
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Figure 2 Morphine analgesic tolerance in pigs administered intrathecal
morphine 75 pg/kg twice daily for 10 days. Nociceptive response was measured
by the latency for thermal stimulation to elicit cutaneous trunci reflex (CTR). A
cutoff time of 40 s was used. Latencies were expressed as mean + standard error

of the mean. (a) Time course of nociceptive responses in morphine (n = 6) vs.
control (n = 6) groups. (b) Time course of analgesia effected by challenge with
intrathecal morphine 75 pg/kg on day 11. The curves were used to calculate the
area under the curve (AUC), which represented morphine analgesic activity.
*P < 0.05 compared with control group.

3.2 2D-DIGE of NAc

To elucidate how morphine analgesic tolerance changes the protein expression
profile in the NAc, the proteome maps of the NAc from morphine-treated pigs and
controls were compared using the 2D-DIGE proteomics strategy to measure the
alterations in the abundance levels of proteins. These dysregulated proteins may be
associated with the molecular mechanisms of morphine analgesic tolerance. Figure 3a
illustrated the representative 2D-DIGE proteome maps of morphine-treated animals and
controls. The proteins were well separated in the 18 cm gel with pl range of 4-7. On
average each gel resolved ~750 protein spots and all the protein spots were subjected to
statistical analyses. Quantification and comparison of each protein spot detected on
2D-DIGE gels demonstrated that most of the protein spots were quantitatively similar,

but 22 protein spots were differentially expressed between the two animal groups (P <
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0.05; Student’s t-test) with a magnitude near or higher than 1.2-fold (Figure 3b and
Table 2). The magnitude of differential expression ranged from —1.5 (spot 321) to +1.69
(spot 338). Of the 22 differentially expressed proteins, 7 proteins were observed to be
over-expressed in the morphine group while 15 proteins were under-expressed. The
inter- and intra-pair variability for the de-regulated protein spots and corresponding

three dimensional images were depicted in Figure 4.

a 4 pH 7

SDS-PAGE

Figure 3 Comparison of nucleus accumbens (NAc) proteome between
morphine and control groups by 2D-DIGE. NAc proteins were minimally labeled
with CyDye (control/morphine groups with Cy3/CyS5, pooled internal standard
with Cy2), separated by isoelectric focusing (IEF) in the first dimension using
18-cm pH 4-7 gel strip as well as by molecular weight using SDS-PAGE in the
second dimension. The resultant gel images were captured with a Typhoon
imager and analyzed by DeCyder program. (a) A representative overlaid
2D-DIGE image of NAc proteins. (b) Areas of the same gel with proteins of
interest boxed and their enlarged counterparts shown to the far right (A—E:
control group; A*~E*: morphine group).

(continued on next page)
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Spot 294: Chain A, KIF1A head-microtubule  Spot 338: Soluble epoxide hydrolase
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Figure 4 Representative proteins of differential expression as determined by
2D-DIGE and analyzed with DeCyder program. Each panel shows the
standardized log abundance of a protein spot in each animal in control or
morphine group. At the top of each panel are a pair of representational
three-dimensional images of the protein spot.

(continued on next page)
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Spot 290: Heat shock 60kDa protein
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Figure 4 (continued)

(continued on next page)
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Spot 527: Creatine kinase B-type Spot 849: Antioxidant protein isoform 1
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Figure 4 (continued)

3.3 ldentification of differentially expressed proteins

After analyzing the proteome maps, peptides were extracted from each
differentially expressed protein spot by in-gel tryptic digestion and proteins were
identified using LC-MS/MS. The MS/MS information for each peptide was searched
against NR database of NCBI. The results of spectrometric analyses are summarized in
Table 2. The experimental MW and pl of most protein spots were similar to the
theoretical values. Seven protein spots exhibited statistically significant up-regulation in
morphine-treated pigs and were characterized as 7 proteins, while 15 protein spots were
significantly decreased in morphine-treated pigs and were identified as 11 proteins. The
identified de-regulated proteins are involved in cytoskeletal functions, cell signaling,

metabolism, protein translation and protein folding.
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3.4 Confirmation of differentially expressed proteins

by Western blotting

De-regulation of cytoskeletons, hsp and CK has been implicated in chronic cocaine
use;[44,45] CaN-mediated pathway has been reported to be involved in learning,
memory and morphine abuse.[46-49] Based upon the above observations, to confirm
our speculation on the 2D-DIGE results, Western blotting was employed to assess the
expression of a-internexin, CaN A, CK-B, EF-Tu and hsp60. Consistent with the
proteomics results, these five proteins were discovered to be down-regulated in most

morphine-treated pigs by Western blotting (Figure 5).
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Figure 5 Western blotting of 5 identified proteins of differential expression
between morphine and control groups. C, control; M, morphine;
CaN A, calcineurin catalytic subunit; CK-B, creatine kinase B-type;
EF-Tu, elongation factor tu; hsp60, heat shock 60kDa protein.

33



AT R TS TS N FRBERIERY LS B eta BT
ﬁ%ﬁ}éﬁcﬁﬁﬁ%%:éiﬁ??%é’%ﬁw%m%mkWﬁ}é?%
w%—%p;oip;%%mwgmgﬂimw}é@?uaﬁ;pﬁ N

é ~ |~\4 /3.1' —'»\" l %ﬁ& X o

ns

%1 * a-internexin (neurofilament-66) % glial fibrillary acidic protein # =8 e
et i kIE Y R R IRARE R oo —‘F*{ % & ¢ B339 F(intermediate filament
proteins) » & fm# ¥ 2% (cytoskeleton) e & o 5 A T B ILE B LT K B et R
CRIEPA S iR A AT RRARR 0 2 T A € R BUCE BRI E % (ventral
tegmental area) 3| KR [ % crigih R ﬂi;'l i¥ (axonal transport) o &7 3 k% & B o vf A %

B RIE P ime § 2 8 B

wie L 4 ¢ ¢ 3F CaN Adisoform 2 KIFIA « & frd g2 (g ~xb i 5 B e
#-v 72 Hipk i (dephosphorylation) @ 24 &4 (¥ % 4 (neuroplasticity) ; {8 & ‘w "2
n ﬂi;'lﬁ F0 0 f F R-RfY ) e m Bk~ (synaptic vesicle precursors)it F fh R v R ff A

# (synaptic terminals)ﬁ%l # o

~ B # & soluble epoxide hydrolase -~ eukaryotic elongation factor 1 y %
selenium-binding protein 1 » = § fefeie § S s fr chikIp 7 F R A R E H 4o o
Soluble epoxide hydrolase ¢ i #{7k ¥ = - & = i fk(epoxyeicosatrienoic acids) > {4 —‘F%
£ 3 bF 2 A G RGE (¥ o Eukaryotic elongation factor 1 %2 £ f8 b chd-v F & =
#AZY FE£ & £ J ; cukaryotic elongation factor 1 y ¥ it & ’"ﬁfﬂ 4 oD B

—

% (dopamine D3 receptor) e T * @ 1§_ ef et X 4 o

= 4 . antioxidant protein isoform ubiquinol-cytochrome ¢ reductase w2
i tioxidant prot fi 1 2 ubiquinol-cytoch ductase #r§
e R R RIET Y P REIMARERE D ’a“?s—‘ﬁéﬁ%\» EFRS VT oa i RIEF: 4

% ¥|% 1* i 2 (oxidative damage) °

H i Thsp60 1 (chaperonin) isoform 1 2 CK-B #Arfetle § 5 d o cniRfgE2 7 @

34



ERARER Y o WA RATL LB N LG H a2 WA AR R
v Feablne CK ieimee ¥ i Eani e o A 404 7 °

$F IR PR G S e e SRR R RIFP O CK A RE

B g2 AP THEP A -0 T H (neuroproteomics)AE 3 1M G R Be
PEFT Fahe AP OFRT NG BN RFEGYHFES AL G MDA S ]

2 eI b s YRETARFLHIEELALBIBEELRET Y ke

35



Chapter 4
DISCUSSION

The present study was undertaken to induce antinociceptive tolerance in Lanyu
miniature pigs with intrathecal morphine and then profile their NAc proteome as a
function of morphine tolerance using proteomics strategy. We demonstrated that
morphine tolerance in pigs was successfully induced with the aforementioned protocol.
Moreover, 2D-DIGE followed by gel image analysis and LC-MS/MS identification of
differentially expressed proteins provided unbiased, sensitive and comprehensive
assessment of the NAc proteome as related to morphine tolerance. To our knowledge,
this is the first report investigating the porcine NAc proteome associated with morphine
tolerance. The differentially expressed proteins thus identified are classified here into

structural, cell signaling, metabolism, mitochondrial or miscellaneous.

4.1 Differentially expressed proteins: structural

Two intermediate filament (IF) proteins, a-internexin (—1.23, —1.26) and glial
fibrillary acidic protein (GFAP; —1.23), were identified in the present study as
differentially expressed structural proteins in the NAc associated with morphine
tolerance. These findings indicate that morphine tolerance has specific effects on the
NAc cytoskeleton. In the present study, two adjacent protein spots (296 and 304) with
similar average ratios on the 2D-DIGE gels were identified by MS as oa-internexin;

these may represent different post-translational modifications.

a-Internexin (or neurofilament-66), a type IV IF protein found in the CNS
neurons,[50-53] may act as the scaffold of neuronal cytoskeleton.[54] It enhances
neurite outgrowth and up-regulates other neurofilaments (NF).[55,56] a-Internexin and
the NF triplet proteins (NF-L, NF-M and NF-H for low, medium and high MW) are
functionally interdependent. By co-assembly with the NF triplet proteins, a-internexin

facilitates the axonal transport of NF assemblies.[57]
The effects of drugs of abuse on the expression of NF proteins (including
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a-internexin) in the MDS have been investigated. Chronic morphine and cocaine
treatments in rats result in unchanged and decreased o-internexin immunoreactivity,
respectively, in the VTA.[58] In the prefrontal cortex of human opioid addicts, the NF
triplet proteins are decreased, but the level of a-internexin remains unchanged.[59] In
the present study a-internexin was down-regulated in the NAc of morphine-tolerant pigs.
The inconsistency between these studies may represent regional/species specificity of
NF regulation by drugs of abuse or different degrees of tolerance to drugs of
abuse.[58-60] Furthermore, chronic morphine in rats alters the structure of the NAc
neurons, as reflected by decreased complexity and number of dendritic
microstructure.[18] Since chronic morphine administration in rats possibly slows down
axonal transport from the VTA to the NAc,[61] our finding may imply impaired axonal
transport in the VTA-to-NAc pathway as a result of morphine tolerance. The resultant
structural/functional alterations of the NAc neurons may decrease downstream signal
transduction,[60] impair the normal functions of the MDS[58] and contribute to the
development of morphine tolerance. This is consistent with the concept that chronic

opioid exposure may induce neural injury.[6]

GFAP is a type III IF protein expressed in astrocytes and other glia.[62] It is
commonly used as an astroglial cell marker such that its expression is used to represent
astroglial activities. Decreased levels of GFAP have been reported in the frontal cortex
of individuals with depression, schizophrenia and bipolar disorder,[63] but the exact
mechanisms remain obscure. On the other hand, GFAP expression is considered a
marker of neural injury as well as opioid tolerance in the CNS.[62,64] It was first shown
in the past decade that chronic morphine treatment in rats induces glial activation (with
concomitant GFAP up-regulation) in the spinal cord and brain.[65] Thereafter an
astroglial component to the pathophysiology of unwanted effects of chronic opioid
exposure was recognized, and activated glial cells are deemed to counter-regulate
opioid analgesia and play a central role in creating morphine tolerance.[66] GFAP
up-regulation was also discovered in the NAc of rhesus monkeys following cocaine
self-administration.[45] In the present study, however, GFAP was down-regulated in the
NAc of morphine-tolerant pigs. It has been shown that morphine inhibits murine
astroglial growth in vitro;[67] besides, CNS astroglial cells may respond to drugs of
abuse in a time-related manner. In mice receiving consecutive daily administration of

cocaine, up-regulation of GFAP in the dentate gyrus was noted after 7, but not 14, days
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of cocaine administration; shrunken and less branched astrocytes observed after 14 daily
administration of cocaine may signify neurotoxicity induced by cocaine.[68] Likewise,
in a rat model of withdrawal from cocaine, increased GFAP expression in the NAc
occurred only following a 3-week withdrawal period but not following shorter
withdrawal periods (24 h or 1 week).[69] Moreover, discrepancy in GFAP expression
between the present and other studies may also arise from differences in the route or
protocol (intermittent vs. continuous) of morphine administration,[70,71] species/strains
of animals,[70,72] brain regions[59,69] or confounding by GFAP isoforms or
post-translational modifications.[37] Since GFAP has a role on maintenance of
myelination,[73] down-regulated GFAP in the NAc may also contribute to injury in the
MDS.

4.2 Differentially expressed proteins: cell signaling

In the present study, CaN catalytic subunit & isoform (—1.5) and chain A, KIF1A
head-microtubule complex structure in AMPPNP-form (+1.14) were identified as
differentially expressed proteins responsible for cell signaling in the NAc related to

morphine tolerance.

CaN, also known as protein phosphatase 3 (PPP3, formerly protein phosphatase
2B), is a calcium- and calmodulin-dependent serine/threonine protein phosphatase
regulating many calcium-mediated intracellular signaling processes. CaN has a unique
heterodimer structure composed of the CaN A catalytic subunit (PPP3C) and the CaN B
regulatory subunit (PPP3R).[74] CaN A a isoform (i.e. CaN catalytic subunit ¢ isoform)
is the predominant CaN A in the brain.[75] The NAc is a part of striatum, which is one
of the areas with the highest level of CaN in rat brain.[76,77] CaN plays a critical role in
the modulation of neuroplasticity[78] by dephosphorylation of various proteins that
regulate neuronal function/excitability and thus signal transduction. Since CaN is a
phosphatase, CaN down-regulation may be expected to stimulate downstream neuronal
signaling. Besides, one of the best-known adaptations to drugs of abuse is the
up-regulation of the cAMP pathway, which activates the transcription factor CREB.[8]
CaN acts as a selective filter for stimulation from NMDA receptors, which are a
member of an anti-opioidergic system,[1,3] so that only stimulus that is strong enough

results in the inactivation of CaN and prolonged phosphorylation of CREB.[78]
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Therefore down-regulated CaN, as revealed in the present study, may contribute to the

development of morphine tolerance.

CaN and various drugs of abuse modulate the phosphorylation of DARPP-32
(dopamine- and cAMP-regulated phosphoprotein, 32 kDa), a regulator of dopaminergic
neurotransmission.[79] Phosphorylated DARPP-32 inhibits protein phosphatase 1 (PP1),
which controls various neurotransmitter receptors, ion channels, and transcription
factors. In striatal slices of mice that lack DARPP-32, there is a decreased response to
drugs of abuse.[80] Thus down-regulated CaN may promote drug abuse phenomenon
by virtue of altered regulation of the DARPP-32/PP1 cascade. On the other hand, drug
addiction and the process of learning and memory may have common underlying
molecular mechanisms, intracellular signaling cascades and similar changes in synaptic
plasticity.[81] The aforementioned regulations by CaN may be related to learning and
memory:[46] first, memory formation is associated with reduced hippocampal CaN
activity;[48] second, CaN inhibition in the amygdala was shown to control the
establishment of long-lasting emotional memory;[49] and third, the reinforcing effects
of morphine are impaired in transgenic mice overexpressing CaN in the
hippocampus.[47] Since the NAc modulates the robustness of memories encoded in the
hippocampus,[81] a decreased CaN level in the NAc may play a role in the initiation

and persistence of drug addiction.

Kinesin superfamily proteins (KIFs) are ATP-driven intracellular transport proteins
(“motor proteins”) that carry macromolecules, vesicles and organelles along the
microtubule “tracks.”[82] KIF1A is a brain-specific member of kinesin 3[83] and
participates in anterograde transport of synaptic vesicle precursors (SVP) along axons
toward synaptic terminals.[84] KIF1A-mediated axonal transport is vital in the viability
and function of neurons.[85] To our knowledge, KIF1A has not yet been directly
implicated in the pathogenesis of morphine tolerance. However, KIF1A carries AMPA
receptors in rat neurons,[86] and chronic morphine in rats is associated with decreased
surface expression of AMPA receptors in the NAc cells.[19] This accumbal
glutamatergic alteration in the presence of up-regulated KIF1A may indicate an attempt
by NAc neurons to compensate for decreased AMPA receptor expression, faulty
transport of SVP by KIF1A or abnormal unloading of SVP from KIF1A. The
up-regulation of KIF1A in the NAc can be explained by reduced anterograde KIF1A
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transport from the NAc, unbalanced synthesis/degradation of KIFI1A,[87] or a
dysfunction of mechanisms inhibiting the peripheral buildup of KIF1A,[88] all of which
may interfere with the axonal transport of SVP by KIF1A and may be associated with
altered synaptic plasticity in the MDS.

4.3 Differentially expressed proteins: metabolism

In the present study, soluble epoxide hydrolase (SEH; +1.69), eukaryotic
elongation factor 1 y (eEFly; +1.25) and selenium-binding protein 1 (SBP1; +1.17)
were identified as differentially expressed proteins linked to metabolism in the NAc

associated with morphine tolerance.

SEH, also named cytosolic epoxide hydrolase or epoxide hydrolase 2, catalyzes the
hydrolysis of epoxide, which are derived from metabolism of endogenous or xenobiotic
substances via oxidation processes such as the cytochrome P450 monooxygenase
system.[89] In the rodent brain, SEH is predominantly localized in neurons and
abundantly expressed in the striatum.[90] SEH in the human brain is distributed
predominantly in the oligodendrocytes and neuronal cell bodies.[91] SEH is responsible
for the metabolism of epoxyeicosatrienoic acids (EETs) and leukotoxin. EETs in the rat
brain are produced by astrocytes.[92] EETs are cytochrome P450 epoxygenases-derived
metabolites of arachidonic acid and function as endogenous chemical mediators[93]
with vasodilatory, anti-inflammatory,[94] antinociceptive[95] and anti-hyperalgesic[96]
properties; besides, EETs are thought to be neuroprotective because they regulate
cerebral blood flow[97] and protect against ischemic brain damage.[90] These
beneficial effects of EETs are attenuated by metabolism by SEH.[93] On the other hand,
the toxicity of leukotoxin such as depressed mitochondrial respiration depends on its
hydrolysis by SEH to toxic diols.[94] Thus we postulate that up-regulated SEH in the
NAc may lead to injury of cells therein and dysfunction of the MDS.

eEF1 is essential for GTP-dependent translational elongation in protein
biosynthesis by transport of aminoacyl tRNA to ribosomes. It consists of eEF1A (a
G-protein) and eEF1B (the guanine nucleotide exchange factor), the later composed of
at least four subunits (a, B, v and 8).[98,99] The exact functions of eEF1By (or eEF1y)

remain largely speculative. It may act as a scaffold for the different subunits in the
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eEF1B complex[99] and enhance the guanine nucleotide exchange activity of
eEF1BB.[100] eEFIBy may interact with endoplasmic reticulum and cytoskeletal
structures and thus anchor the multi-subunit eEF1B therein and regulate protein

synthesis.[100-102]

The association between morphine tolerance and eEF1By up-regulation, as
revealed in the present study, has not been reported previously. eEF1BBy complex was
found to co-localize and interact with dopamine D3 receptor (D3R) on the plasma
membrane in vitro.[103] A high level of D3R mRNA is expressed in the NAc.[104]
D3R mRNA is increased in dopaminergic and dopaminoceptive regions of the rat brain
in response to chronic morphine.[105] D3R agonist 7-hydroxydipropylaminotetralin
(7-OH-DPAT) attenuates the development of morphine tolerance in rats,[ 106] whereas
a remarkable enhancement of morphine-induced rewarding effect is noted in D3R
knock-out mice.[107] We postulate that eEF1By may act either as a D3R antagonist to
accentuate the development of morphine tolerance, or as a D3R agonist to normalize the

dysregulated dopamine transmission associated with morphine tolerance.

Mammalian SBP1, a 56 kDa protein that binds selenium, was first found in mouse
liver[108] and proposed to be a growth regulatory protein.[109] Reduced SBPI
expression has been reported in multiple human malignancies.[110-113] Neuronal and
glial expression of SBP1 in the brain has been demonstrated,[114] but its role in the
brain remains elusive. SBP1 is up-regulated in the brain of schizophrenic and psychotic
patients.[114,115] SBP1 may take part in late stages of intra-Golgi protein transport and
regulate vesicular docking/fusion.[116] Moreover, in human glioma and neuroblastoma
cells, SBP showed polarized localization exclusively at the growing tips.[117]
Therefore, SBP1 may have a role in rapid outgrowth of brain cells and thus take part in

neuroplasticity associated with the development of morphine tolerance.

4.4 Differentially expressed proteins: mitochondrial

In the present study, antioxidant protein isoform 1 (AOP-1; —1.37) and
ubiquinol-cytochrome ¢ reductase (-1.19) were identified as differentially expressed

mitochondrial proteins in the NAc related to morphine tolerance.
Mitochondrial AOP-1, or peroxiredoxin 3 (PRDX3) protein, belongs to a family of
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thiol-based peroxidases that reduce peroxides and protect cells against oxidative
damage.[118] PRDX3 in the brain is expressed in neurons.[119] Its in vivo functions are
unclear. Inactivation of PRDX3 enhances apoptosis,[120] which may be related to the
apoptotic effect of H,O,. PRDX3 also protects rat hippocampal neurons from
excitotoxicity.[121] PRDX2 is down-regulated in the NAc of cocaine overdose victims;
the phenomenon may represent the result of H,O, accumulation and oxidative stress.[44]
Likewise, down-regulation of PRDX3 in the NAc of morphine-tolerant pigs, as revealed
in the present study, may predispose to oxidative damage in the NAc and dysfunction of

the MDS.

Ubiquinol-cytochrome ¢ reductase (electron transport complex III) is a
mitochondrial oxidative phosphorylation enzyme. Down-regulation of this enzyme in
the NAc of morphine-tolerant pigs was revealed in the present study. Decreased levels
of the components of the ubiquinol-cytochrome ¢ reductase complex were found in the
brains of rats with morphine dependence[122] as well as in the frontal cortex of
individuals with depression.[63] The significance of these findings awaits further

investigation.

4.5 Differentially expressed proteins: miscellaneous

In the present study, hsp60 1 (chaperonin) isoform 1 (-=1.322) and CK-B or CK
(-1.31, —1.38, —1.36, —1.27) were identified as differentially expressed proteins in the

NAc associated with morphine tolerance.

Hsp60, or chaperonin 60, is a molecular chaperone[123] that assists the
ATP-dependent folding of nascent polypeptides into functional three-dimensional
conformations, counteracts unwanted protein aggregation and protects proteins from
denaturation following stress conditions (such as high temperature or ischemia).[124]
Besides the preservation of the integrity of proteome, hsp60 is also responsible for

facilitating the transport and maintenance of mitochondrial proteins.[125]

Hsp has been proposed to defend against neurotoxicity.[126,127] Antibodies to
hsp60 have been connected to schizophrenia, which may be explained by inhibition of
neuroprotection.[128,129] Induction of hsp60 in rodents with recombinant adenoviruses

expressing hsp60 protects hippocampal neurons from ischemic damage.[130] Therefore,
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down-regulation of hsp60 in the NAc of morphine-tolerant pigs, as revealed in the
present study, may result in defect of some proteins (presumably from loss of “protein
quality control”’[131]) and thus impair the functions of the NAc neurons and contribute

to the development of morphine tolerance.

In mammals, there are three dimeric isozymes (CK-BB, CK-MB and CK-MM) of
CK in the cytoplasm of excitable cells and tissues with high and fluctuating energy
consumption such as brain and muscle. All of the isozymes catalyze the reversible
transfer of high-energy phosphate between ATP and creatine phosphate and thus act as

a critical energy buffer and regulator in tissues with high energy demands.[132,133]

Normal CK activity is crucial to brain function.[134] Some evidence suggests an
association between functional impairment of CK and neurological diseases, possibly
mediated by compromised energy metabolism in the nervous system. Decreased level or
activity of CK-B (brain-type CK) in the brain was reported in individuals with
schizophrenia, Alzheimer’s disease or Pick’s disease.[135-138] As drug addiction is the
results of neuroadaptation, it is reasonable to speculate that there are concomitant
alterations of energy metabolism in the relevant brain nuclei. Opiates cause a global
reduction in brain metabolism;[139] a decline in CK-B level was also observed in the
NAc in rhesus monkeys self-injecting cocaine.[45] In contrast, the psychoactive
component of marijuana caused up-regulated CK-B in normal human astrocytes.[140]
The inconsistency might be explained by differences between drugs and/or species. In
the present study, there were 4 adjacent protein spots (524, 527, 529 and 530) identified
by MS as CK-B (or CK) with similar, significantly decreased level in the morphine
group. These may represent different degrees of phosphorylation.

4.6 Conclusion

Morphine tolerance poses a severe problem to the patients in pain and clinicians,
but its underlying neuroadaptive and biochemical changes are far from clear. In the
present study we used proteomics approach to examine the NAc proteome in a pig
model of morphine tolerance. The differentially expressed proteins thus identified are
pertinent to cytoskeleton, cell signaling, metabolism, mitochondrial function and

chaperonin. Some of the identified proteins are previously not known to be involved in
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morphine tolerance. The findings of the present study proves the feasibility of a pig
model in the field of neuroproteomics and shed light on the interplay of molecular and
chemical mechanisms associated in the pathophysiology of morphine tolerance. The
proteins identified in the present study may serve as targets for future studies on the

diagnosis and treatment of opioid tolerance.
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