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Coarctation-induced degenerative abdominal aortic
aneurysm in a porcine model

Pao-Yen Lin, MD,*™* Yeng-Ting Wu, MS,* Guan-Cheng Lin, BS,"* Yao Hsiang Shih, BS,°
Ariunaa Sampilvanjil, MD,® Lih-Ren Chen, PhD,f Yu-Jen Yang, MD, PhD, Hua-Lin Wu, PhD,"#
and Meei Jyh Jiang, PhD,> Tuinan, Taiwan

Objective: Hemodynamic stress participates in the initiation and progression of aneurysmal degeneration. Coarctation
increases flow-mediated stress on the aortic wall. We tested the hypothesis that prolonged coarctation of an infrarenal
abdominal aorta (AA) segment leads to abdominal aortic aneurysm (AAA) formation in mini pigs.

Methods: An asymmetric, funnel-shaped flow path was created by constricting the infrarenal AA segment of Taiwanese
Lanyu mini pigs (age, 7-10 months; male and female) wrapped with an 8-mm-wide expanded polytetrafluoroethylene
Teflon strip for 4 weeks (4w), 8 weeks (8w), and 12 weeks (12w) (seven pigs per group). This mimics the tortuous
aneurysm neck in human AAA, which increases downstream flow-mediated stress. Significant flow disturbance resulting
from moderate coarctation was indicated by a pulsatility index reduced to one third the inherent levels. Sham control pigs
received Teflon wrapping without coarctation.

Results: Aneurysm characterized by progressive medial degeneration occurred at the terminal AA after 12w coarctation.
The outer dimension enlargement of the distal AA exceeded 50% compared with that of the proximal AA at 4w, 8w, and
12w postcoarctation (sham, 1.0; 4w, 1.7 = 0.08; 8w, 1.5 = 0.09; 12w, 1.7 = 0.01). Lumen ratio of the distal-to-
suprarenal AA increased time dependently, with 12w postcoarctation exhibiting significant increase (sham, 1.0 = 0.05;
4w, 1.1 = 0.11; 8w, 1.4 = 0.20; 12w, 1.5 = 0.09). In the distal AA, elastic lamellae exhibited fragmentation at 4w and
more pronounced fragmentation with decreased density at 8w and 12w postcoarctation. Medial collagen density
exhibited the trend to increase at 4w and 8w but was reversed at 12w postcoarctation. Smooth muscle exhibited disarray
and nuclear density decrease at 8w and 12w postcoarctation (sham, 6966 = 888,/mm?; 4w, 5747 + 1340/mm?; 8w,
4153 = 323/mm?; 12w, 4083 = 465/mm>). Gelatin zymography revealed that matrix metalloproteinase-9 activity
markedly increased at 4w postcoarctation.

Conclusions: Prolonged moderate coarctation caused regional hemodynamic stress and thereby induced degenerative AAA
in the terminal AA. (J Vasc Surg 2013;57:806-15.)

Clinical Relevance: The present study demonstrates that persistent hemodynamic stress participates in the progression of
aneurysmal degeneration. Moderate coarctation not only increases regional hemodynamic stress on the terminal aorta but
also creates an asymmetric and angulated inflow tract similar to the tortuous aneurysm neck. Restoring normal flow
pattern in the aneurysm sac as well as reducing regional hemodynamic stress by correcting the tortuous neck may prevent
or reverse further aneurysmal degeneration. This porcine abdominal aortic aneurysm model provides a versatile platform

to investigate abdominal aortic aneurysm pathogenesis and to develop new therapeutics.

Abdominal aortic aneurysm (AAA) is a common and
life-threatening disease that affects 4% to 8% of the popula-
tion older than 65 years." The disease process is mainly
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localized at the infrarenal abdominal aortic (AA) segment,
where gradual weakening and dilatation of the aortic wall
develop as consequences of chronic structural degenera-
tion.”> Most AAAs remain asymptomatic until the cata-
strophic event of rupture occurs. However, the risk of
death exceeds 80% once aneurysm ruptures.® The current
strategy for AAA treatment focuses on preventing aneurysm
rupture. In spite of the improvement in diagnostic imaging
modalities and surgical techniques with less invasive endo-
vascular aneurysm repair, no significant progress has been
made toward improving the morbidity and mortality of
AAA at such an advanced stage.*® Therefore, changing
the strategy from passively preventing late rupture to
actively reducing early degeneration should provide an
avenue for improving outcomes of AAA treatment.®”
Reducing aneurysmal degeneration relies on thoroughly
understanding the pathogenesis of AAA. Along the area of
AAA degeneration, the aneurysmal wall is characterized by
progressive destruction of extracellular matrix (ECM).
Destruction of ECM results from two highly connected
processes, consecutive inflammatory responses and excessive
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proteolytic degradation, which lead to decreased tensile
strength and increased wall tension. When wall stress exceeds
tensile strength, aneurysm rupture occurs.® However,
compelling evidence reveals that aneurysmal degeneration
isnotauniformand irretrievable process. Instead, the process
represents a seesaw contest between repair and destruction of
vascular ECM up to the rupture stage.” Therefore, identifying
the pathophysiologic factors that harness degeneration or
facilitate destruction of the vessel wall should help in the
development of new diagnostic and therapeutic modalities
for AAA.

To gain insight into the pathogenesis of AAA develop-
ment, an animal model mimicking early human aneurysmal
degeneration is needed. Using chemical or surgical means,
various animal models have been developed to mimic AAA
in humans.'® However, discrepancies exist between exper-
imentally induced AAAs and degenerative aneurysm in
humans; in particular, the earliest inciting process remains
elusive.'® Mini pigs have a physical size suitable for surgical
manipulation. Moreover, the cardiovascular system of pig,
both anatomically and physiologically, is almost the same
as that of human.'! Therefore, we attempted to simulate
aneurysmal degeneration by modeling the porcine aorta
with coarctation. Coarctation increases hemodynamic
stress on the aortic wall and creates flow disturbance.
Previous studies showed that hemodynamic stress is rele-
vant to AAA predisposition and that flow variability mark-
edly influences arterial lumen diameter.''® A recent study
applied a perivascular cast to modify shear stress of the
carotid artery in apolipoprotein E (ApoE)™~ mice and
showed that both lower and oscillatory shear stresses
induce atherosclerosis.'® Interestingly, poststenotic arterial
dilatation was detected at the area exhibiting oscillatory
shear stress distal to the cast."® We hypothesized that pro-
longed coarctation at the infrarenal AA segment induces
outward vascular remodeling and consequently leads to
AAA formation. Using an expanded polytetrafluoroethylene
(ePTFE) strip to perform a funnel-shape coarctation in an
infrarenal AA segment of mini pigs, we detected 50% luminal
dilatation in the distal AA segment at 12 weeks postcoarcta-
tion. Macroscopic and microscopic results indicated that we
successfully established a coarctation-induced degenerative
AAA model in swine.

METHODS

Animals. Experimental animals used in this study were
Taiwanese Lanyu mini pigs, which have been qualified as
an excellent pig strain for cardiovascular research.'”
Further information on Taiwanese Lanyu pigs can be
found on the website http://minipigs.angrin.tlri.gov.tw.
All experimental pigs (7- to -10-month-old adults; both
genders) were provided by Taitung Animal Propagation
Station of the Taiwan Livestock Research Institute and
completed the quarantine before experiments. Thirty mini
pigs were randomly divided into six groups: three experi-
mental groups (seven pigs per group) undergoing aortic
coarctation for 4 weeks (4w), 8 weeks (8w), and 12 weeks
(12w) and three sham groups (4w, 8w, and 12w; three pigs
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per group) as the control. The whole study conforms to the
Guide for the Care and Use of Laboratory Animals pub-
lished by the National Institutes of Health, and the
experimental procedures were approved by the institutional
Animal Care and Use Committee.

Anesthesia and aortic coarctation. Preanesthesia
induction of mini pigs was conducted by intramuscularly
injecting a mixture of tranquilizer, analgesics, and anticho-
linergics containing a mixture of zolazepam and tiletamine
(10 mL), xylazine hydrochloride (5 mL), and atropine
(1 mL) at the pigs’ posterior neck or gluteal region. The
sedated pigs were placed on the operation table in the
supine position, and intravenous fluid infusion routes
were established through the postauricular veins. Endotra-
cheal intubation was performed, and isoflurane (2% of tidal
volume) was continuously given during surgery to maintain
general anesthesia. To better expose the infrarenal aorta
and bilateral common iliac arteries, a transperitoneal cavity
approach via laparotomy was taken. After the retroperito-
neum was opened, infrarenal AA was isolated free from
the surrounding tissues. An ePTFE Teflon strip with 8-
mm-diameter to simulate the infrarenal AA size was used
to encircle the AA approximately 2 cm above the bifurca-
tion of aorta. We have found that coarctation at this
location consistently generates flow turbulence and induces
aneurysm. The Teflon strip was tailored to a funnel-shaped
tube that modeled the wrapped aortic segment into
a tapered channel with a nonconstrictive inlet and a
constrictive outlet (Fig 1, A). The sham group underwent
a retroperitoneal opening, AA isolation, and Teflon strip
wrapping without aortic coarctation. The surgical proce-
dure was carried out under aseptic conditions and was
completed within 3 hours to avoid respiratory distress
caused by prolonged supine posture.

Quantitative characterization of aortic coarcta-
tion. Aortic coarctation may create resistive hemodynamic
conditions (ie, diminished anterograde flow and oscillatory
shear stress) that mediate aneurysm formation.'® However,
neither very tight nor mild luminal constriction produces
marked flow disturbance.'® The excellent resilience of the
aortic wall against cyclic deformation usually prevents the
inner lumen from stenosing upon external compression.
Moreover, the susceptibility to vasospasm along the
pulsating wall often makes accurate measurement of the
luminal diameter of aorta difficult. To achieve moderate
coarctation, we chose the pulsatility index to quantitatively
characterize hemodynamic changes. The pulsatility index
was calculated by dividing the difference between the
maximal and minimal flow rate by the mean flow rate. 2%
The reduction of the pulsatility index is proportional to the
severity of aortic coarctation.?>?* Hence, our criteria for
moderate coarctation were pulsatility index reduction to
one third of the inherent level (Fig 1, B) combined with
turbulent flow in the aortic segment distal to the con-
striction (Fig 2). A transit time flowmeter system (Medi-
Stim VeriQ system; MediStim ASA, Oslo, Norway) was
used during the operation to simultaneously monitor flow,
pressure, and pulsatility index changes at the regions
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Fig 1. Coarctation decreased pulsatility index in both proximal and distal abdominal aorta (AA) segments. A, Location
of coarctation at an infrarenal AA segment approximately 2 cm proximal to the iliac bifurcation. An 8-mm-long
expanded polytetrafluoroethylene strip was used to encircle the infrarenal AA segment with a nonconstrictive inlet and
a constrictive outlet. B, Transit time flowmeter system used during operation to simultaneously monitor changes in
flow, pressure, and pulsatility index at regions proximal and distal to the coarctation. Values were expressed as mean =
standard error of the mean (sham, n = 4; coarctation: n = 8). CIA, Common iliac artery; RA, renal artery. ***P < .005
vs sham group.
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Fig 2. Coarctation-induced turbulent flow in the distal abdominal aorta (AA) segment. Duplex ultrasound scanning
was conducted during the coarctation procedure to monitor flow patterns in both proximal and distal AA segments.
Ultrasound scanning images showed a mosaic flow pattern in the distal AA segment after coarctation and a lamellar flow
pattern in the proximal AA segment and sham control. Doppler spectral analysis indicated decreased peak systolic flow
and increased reverse flow after coarctation, whereas sham operation had little effect on flow pattern.

proximal and distal to the coarctation. Flow turbulence was
detected by duplex ultrasound scanning (MicroMaxx;
SonoSite, Bothell, Wash), which provides a mosaic color

pattern of flow and Doppler spectral analysis that shows
simultancous forward and reverse flow, spectrum fill-in,
and ill-defined spectrum margins after coarctation.
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Sacrifice and tissue collection/processing. Mini pigs
were anesthetized as described for the coarctation opera-
tion. Before the retroperitoneum was opened, duplex ultra-
sound scanning was performed to acquire images of the
aortic lumen at the distal AA segment. After the infrarenal
AA was isolated, blood flow, pulsatility index (PI), and
intraluminal blood pressure at the proximal and distal AA
segments were monitored. In addition, the outer diameter
of various AA segments was measured. Animals were then
sacrificed with an intravenous injection of KCl (2 mmol per
kilogram body weight). The AA segments from regions
proximal and distal to the coarctation and the suprarenal
area were collected. Tissues were fixed in 4% buffered para-
formaldehyde, dehydrated with sequential incubation with
ethanol from 70% to 100%, cleared with xylene, and
embedded with paraffin.

Histologic examination of the abdominal aorta. To
examine the overall morphology and the distribution of
elastic lamellae and collagen fibers in various AA segments,
hematoxylin-eosin, Verhoeft-van Gieson, and Masson tri-
chrome staining was performed. Paraffin sections (4 pm
thick) were deparaffinized, rehydrated, and stained acc-
ording to the manufacturer’s instructions.

Detecting smooth muscle density with immuno-
histochemistry. Paraffin sections of different AA segments
were processed and incubated overnight with monoclonal
antibody against smooth muscle-specific a-actin (1:400,
clone 1A4; Sigma, St. Louis, Mo; or clone E184; Epi-
tomics, Burlingame, Calif) at 4°C. To detect the assembly
of medial vascular smooth muscle cells (VSMC), aortic
sections were subsequently incubated with horseradish
peroxidase-conjugated horse antimouse immunoglobulin
and chromogen substrate and counterstained with hema-
toxylin. To examine the number of nuclei in the medial
VSMC, aortic sections were subsequently incubated with
Alexa 594-conjugated horse antimouse immunoglobulin
and Hoechst 33342.

Quantification. Aortic lumen perimeter, medial smooth
muscle percent area, and medial nuclear density were mea-
sured by Image Pro-Plus (Media Cybernetics, Rockville,
Md). The relative abundance of collagen and elastic fibers in
the media was quantified as previously described in four
sections with 80-pm intervals and four fields (100 x magnifi-
cation) each.*

Gelatin zymography. Gelatin zymography was per-
formed according to Davis et al*® (see the Appendix, on-
line only, for details.)

Statistical analysis. Data are expressed as mean *
standard error of the mean; n is the number of pigs. Data
were analyzed first with one-way analysis of variance, fol-
lowed by Tukey honestly significant difference test
between groups. Statistical significance was set at P < .05.

RESULTS

Changes in blood pressure and pulsatility index.
We measured blood pressure at the AA segments proximal
and distal to the coarctation site after operation and before
sacrifice in 12 pigs. Following coarctation, systolic blood
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Table. Systolic and diastolic blood pressure levels in AA
segments proximal and distal to coarctation at operation
and sacrifice

Proximal AA Distal AA
Sham, Coarctation, Sham, Coarctation,
mm Hy mm Hy mm Hyg mm Hy
Operation
SBP 99 + 10.0 98 + 3.8 93 + 10.5 65 + 9.9°
n=4% n=3_§8 n=4 n=3§8
DBP 68 = 11.8 64 + 44 67 =+ 11.4 53+ 5.6
n=4% n=3_§8 n=4 n=3§8
Sacrifice
SBP 98 = 6.8 89 + 35 98 + 75 94 + 49
n=3 n=3_8 n=3 n=2_§8
DBP 67 + 94 61 + 24 68 + 95 61 + 24
n=3 n=3_§8 n=3 n=2§8

AA, Abdominal aorta; DBP, diastolic blood pressure; SBP, systolic blood
pressure.

Values are given as mean = standard error of the mean. SBP and DBP were
measured intraluminally using the MediStim VeriQ system.

*P < .01 vs sham group.

pressure at the distal AA decreased and a pressure gradient
of approximately 30 mm Hg was detected between the
proximal and distal AA segments. In contrast, diastolic
blood pressure did not vary between these AA segments.
Interestingly, systolic blood pressure at the distal AA had
returned to pre-operation levels at sacrifice (Table).
Similarly, PI values had reversed to preoperation levels
similar to those of sham control (coarctation group:
proximal AA, 2.7 * 0.33; distal AA, 2.7 = 0.35, n = 12;
sham group: proximal AA, 2.4 = 0.55, distal AA, 2.4 =
0.56,n = 5).
Coarctation-induced AAA formation in mini pigs.

To determine whether coarctation induced aneurysm, we
examined both the luminal and the outer diameters of
the infrarenal AA segments before sacrifice and measured
the luminal perimeters of the distal AA segments in cross
sections. The luminal diameters of both proximal and distal
AA segments were examined with duplex ultrasound scan-
ning after the retroperitoneum was opened. The lumen of
the distal AA segment at 12w postcoarctation exhibited
pronounced dilatation whereas that of the sham group
was near constant in size (Fig 3, A). The outer diameter
of the distal AA segment markedly increased at 4w post-
coarctation and remained a similar size up to 12w post-
coarctation (Fig 3, B). In the infrarenal aorta with length of
5.8 = 0.31 cm (n = 10), the isolated AAA appeared fusi-
form, was located at the distal segment, and often extended
to the common iliac arteries. Because the proximal AA
segment often exhibited pronounced intimal thickening
that rendered lumen measurement less accurate, we used
the suprarenal AA as the reference. Hematoxylin-eosin
staining showed that the lumen perimeter ratio of the
distal-to-suprarenal segment increased at 8w post-
coarctation and reached approximately 50% at 12w post-
coarctation (8w, 1.4 = 0.20,n = 6; 12w, 1.5 = 0.09,n =
7; sham, 1.0 £ 0.05, n = 9). In contrast, the lumen
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Fig 3. Outer diameter and lumen perimeter of the distal abdominal aorta (AA) segment increased after coarctation. A,
Representative duplex ultrasound scanning images showing increased lumen size in the distal AA segment at 12 weeks
(12w) postcoarctation before sacrifice and uniform lumen in the sham group. B, Outer diameter of proximal and distal
AA segments was measured after isolation of AA in the retroperitoneum. The ratio of distal-to-proximal AA diameter
was calculated. **P < .01, ***P < .001 vs sham group. C and D, Hematoxylin-cosin staining of the distal AA segment
(cross section) from sham group and experimental group at 4 weeks (4w), 8 weeks (8w), and 12 weeks (12w) post-
coarctation. C, Representative results. Scale bar: 1000 um. D, Lumen perimeter ratio of distal-to-suprarenal AA
segment. Lumen perimeter ratio at 12w postcoarctation increased compared with sham group (P < .05). AL, Aortic

lumen; CIA, common iliac artery; SA, spinal artery.

perimeter of the distal AA segment at 4w postcoarctation
did not change compared with that of the sham control
(1.1 = 0.11, n = 5; Fig 3, C and D).

Changes in elastic lamellac and collagen fibers
during AAA formation. To characterize the structural
changes in the AA wall, we examined the density of elastic
lamella with Verhoeft staining. In the distal AA at 4w
postcoarctation, the density of elastic lamellae in the
media did not change, but fragmentation was easily
detected compared with sham control. The decrease and
fragmentation of elastic lamellac were more pronounced
at 8w and 12w postcoarctation (Fig 4, A and B).

Interestingly, elastic fibers in the adventitia appeared to
increase at 4w and 8w postcoarctation but returned to
basal levels at 12w postcoarctation.

We next examined the distribution of collagen fibers in
the AA segments. Collagen fibers were mainly distributed
in the adventitia, with a lower density in the media of the
sham group (Fig 4, C and D). The density of collagen
fibers in the media of the distal AA segment exhibited
a trend to increase at 4w and 8w postcoarctation but
returned to basal levels at 12w postcoarctation. In addition,
prominent collagen fibers were detected in focally thick-
ened intima at both 8w and 12w postcoarctation.
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Fig 4. Changes in elastic lamella and collagen fibers in coarctation-induced abdominal aortic aneurysm (AAA). Elastic
fibers (A and B) and collagen fibers (C and D) in the distal AA segment (cross section) from the sham group and
experimental groups of 4 weeks (4w), 8 weeks (8w), and 12 weeks (12w) postcoarctation were examined. Elastic fibers
were examined with Verhoeft-van Gieson staining. Collagen fibers were examined with Masson trichrome staining.
A and C, Representative results. Scale bar: 200 pm. B and D, Relative abundance of elastic lamella (B) and collagen
fibers (D). Values are given as mean * standard error of the mean (B, n = 4~8; D, n = 3~4). *P <.05 vs sham.

Smooth muscle cell density decreased during AAA
formation. To examine whether changes occurred in
smooth muscle cells during AAA formation, we stained
distal AA sections with smooth muscle-specific o-actin
and counted nuclear density in the media. No significant
change in percent area of VSMC was detected (Fig 5, 4). In
contrast, the nuclear density of the media decreased
markedly at 8w and 12w postcoarctation (Fig 5, ¢). These
results suggest that VSMC hypertrophy occurred during
AAA progression. Interestingly, in the distal AA, alignment
of VSMC near the adventitia appeared to change from
circularly oriented, highly ordered layers to longitudinally
oriented bundles in some areas of the media both at 8w
(Fig 5, a, ¢, and ¢) and 12w (Fig 5, a, 4, and f) post-
coarctation. In some areas of the distal AA sections, the
boundary between media and adventitia was difficult to
define.

Metalloproteinase activity increased during AAA
formation. Because matrix metalloproteinase (MMP)-2
and MMP-9 play important roles in AAA formation, we
examined their activity in the distal AA segment using
gelatin zymography. The MMP-2 exhibited high intrinsic

activity that did not increase after coarctation. In contrast,
proMMP-9 activity exhibited a trend to be higher in the
coarctation groups compared with the sham control and
was significantly upregulated at 4w postcoarctation (Fig 6).

DISCUSSION

Our results clearly showed that prolonged coarctation
for 12w induces infrarenal AAA at the distal AA segment.
The maximal outer dimension of aneurysm usually was
>1.5-fold that of the segment proximal to coarctation.
Histologic examination detected enlargement of the lumen
at the distal AA after prolonged coarctation. The distal-to-
suprarenal AA luminal perimeter ratio indicated lumen dila-
tation of the distal AA at 8w and 12w postcoarctation.
Moreover, the ratio increased with the period of coarcta-
tion, suggesting that longer coarctation leads to further
aneurysm expansion. Although 4w coarctation did not
lead to lumen enlargement, structural degeneration that
nevertheless developed during this period as fragmentation
of elastic lamellae was easily detected in the aortic media.
Destruction of elastic lamellae became pronounced in the
ancurysmal walls at 8w and 12w postcoarctation, with
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Fig 5. Smooth muscle cell density decreased during abdominal aortic aneurysm (AAA) formation. A and B, Smooth
muscle abundance in the distal abdominal aorta (AA) segment of sham group (a) and experimental groups of 4 weeks
(4w; b), 8 weeks (8w; c and e), and 12 weeks (12w; d and f) postcoarctation was assessed with smooth muscle-specific
a-actin (SMA)-positive area. A, Representative results. Scale bars: 200 pm (a-d); 50 pm (e and f). B, The SMA-positive
area is presented as mean * standard error of the mean (n = 3~6). C, Cross sections of the distal AA segment from
various groups stained with SMA immunofluorescence and Hoechst 33342. Smooth muscle cell nuclei were counted in
the media and nuclear density presented as mean = standard error of the mean (n = 4~38).

severe loss detected at 12w postcoarctation (Fig 4).
Progressive loss of elastic lamellae in the AAA segment
was accompanied by lower elasticity in 50% of pigs at 4w
postcoarctation, lower elasticity at 8w, and lost elasticity
at 12w of the banded aortic segment when the Teflon strip
was removed. Taken together, these results strongly
suggest that prolonged coarctation for 12w induces degen-
erative AAA.

Changes of medial collagen density also characterize the
degeneration processes in coarctation-induced AAA. At 4w
and 8w postcoarctation, medial collagen density exhibited
a trend to increase, which may represent a mechanism to
compensate for elastic lamellae degradation in earlier stages
of aneurysm progression. In accordance, loss of medial
collagen upregulation at 12w postcoarctation may indicate
decompensation of collagen homeostasis.” Longer coarcta-
tion may result in prevailing collagen degradation, which
attenuated the tensile strength of the aortic wall and,
combined with profound elastic lamella degradation,
conferred advanced medial degeneration and led to anecu-
rysmal dilatation. It is noteworthy that gelatinolytic activity
of MMP-9 was higher at 4w and 8w postcoarctation than at
12w postcoarctation, whereas no change was detected for

MMP-2. These results are in discrepancy with previous
studies reporting increased MMP-2 activity in human
AAA spacemens.?® The discrepancy could reflect differences
between early- and late-stage AAA and is consistent with the
involvement of other factors in addition to hemodynamic
stress in late-stage human AAA. To clarify the roles of
MMPs in ECM degradation during AAA progression,
further studies examining changes in tissue inhibitors of
metalloproteinases and the activity ratios between MMPs
and tissue inhibitors of metalloproteinases are warranted.
In our coarctation-induced AAA model, VSMC
nuclear density significantly decreased at 8w and 12w post-
coarctation, whereas the percent area of VSMC did not
change as assessed with smooth muscle-specific @-actin
expression. The decrease in VSMC density, approximately
40%, exhibited features similar to, but less pronounced
than, that reported in large human AAAs (>4.5 cm).?°
This feature suggests that AAA at 12w postcoarctation
probably is at an earlier stage than large human AAAs.
The decreased cell density in combination with relatively
constant cell area suggests that smooth muscle cell hyper-
trophy occurs during coarctation-induced AAA progression.
During aneurysm development, we detected disordered
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Fig 6. Matrix metalloproteinase (MMP)-9 activity increased during abdominal aortic aneurysm (AAA) formation.
Activity of MMP-2 and MMP-9 was assessed by gelatin zymography in the distal AA segment of the control group and
the coarctation groups at 4 weeks (4w), 8 weeks (8w), and 12 weeks (12w) postcoarctation. Tissue homogenates (30 pg
of protein) were separated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing gelatin, rena-
tured, and incubated. Enzyme activity was detected as clear bands following Coomassie blue staining and destaining.
A, Representative results. B, Quantitative results expressed as mean =+ standard error of the mean (n = 3~5). *P < .05

vs sham.

assembly of VSMC, which became more pronounced as
aneurysmal dilatation progressed between 4w and 12w post-
coarctation (Fig 5). In these regions of aneurysmal wall, the
orderly and circular array of alternating VSMC layers and
elastic lamella was replaced with disarrayed VSMC and frag-
mented, or even scarce, elastic lamellac. This phenomenon
correlates well with our results showing that MMP-9 gelat-
inolytic activity increased in the distal AA during AAA devel-
opment (Fig 6). Intriguingly, VSMC disorganization did
not occur in the whole aneurysmal wall but instead appeared
in multiple discrete regions. The uneven distribution of
VSMC disarray likely results from the disparity of hemo-
dynamic stresses, which were shown to modulate the
expansion rate of eclastase infusion-induced AAA in a rat
model.?” In the outer media near the adventitia, VSMC
bundles, which replaced regular cell layers, became more
pronounced and were surrounded with collagen fibers as
the coarctation period increased. The concomitant loss of
discrete elastic lamellac and VSMC layers rendered the
boundary between media and adventitia difficult to define.
It is interesting to note that deficiency in key regulatory
proteins for VSMC-ECM interaction, such as fibulin-4 and
integrin-linked kinase, leads to aneurysm in the thoracic
aorta.**2? Whether VSMC remodeling varies as AAA prog-
resses into different stages remains to be examined.

Our results indicated that both at initiation and during
progression of AAA, hemodynamic forces participate in the

evolutionary degeneration process. Three hemodynamic
forces are recognized to be relevant to AAA pathogenesis:
wall shear stress, tensile stress, and hydrostatic pressure.*”
Pulsatile blood flow transmits kinetic energies on aortic
tissues with different orientation and hence generates the
aforementioned hemodynamic forces.® When flow is
disturbed, fluctuation of hemodynamic forces induces
a variety of pathophysiologic responses that destroy the
structural integrity of the aortic wall."®3? By constricting
an infrarenal AA segment, we created a disturbed flow envi-
ronment at the distal region where oscillatory shear stress
was pronounced. Consequently, AAA developed and ancu-
rysmal degeneration continued to evolve under the persis-
tent impact of regional pathologic hemodynamics. It is
noteworthy that the adjacent position of the coarctation
site to the aortic bifurcation, approximately 2 cm apart,
appeared to facilitate aneurysm formation. This may result
from more pronounced flow disturbance that is consistent
with the low oscillatory shear stress and increased pulse
wave reflection /wall strain detected near the aortic bifurca-
tion, which increase aneurysm susceptibility of the site.'®33

Our experimental model also suggested that moderate
restriction and distortion of an aortic segment predispose
distal AA to aneurysmal degeneration. Aortic coarctation
not only disturbs the forward laminar flow but also inter-
rupts the normal cyclic strain of aorta. As a result, turbulent
flow in concert with limited pulsation entangles the distal
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AA with resistive hemodynamics that facilitates AAA for-
mation.'® However, a standard parameter for quantifying
moderate coarctation has never been established. Palpable
thrill or audible bruit, which has been used as the criterion
for significant peripheral arterial stenosis, is highly subjec-
tive and fails to consistently assess the severity of aortic
coarctation.'”** Everlasting pulsation, keen vasospastic
reaction, and excellent resilience capability interfere with
precise measurement of aortic diameter. On the other
hand, changes of flow rate should reflect the genuine
magnitude of constriction because a decrease in peak
systolic flow rate is proportional to an increase in aortic
coarctation. Pulsatility index provides an objective index
of the extent of coarctation and is not readily affected by
physiologic activities of the aorta.?> Therefore, we chose
the pulsatility index as the quantitative parameter of coarc-
tation in our experiments. Our results showed that 65%
reduction of the original pulsatility index produced
pronounced turbulence in the downstream AA region
where mosaic turbulent flow was detected by color
Doppler images and disturbed spectral pattern was shown
by Doppler spectral analysis (Fig 2). Thus, we defined pul-
satility index reduction to one third of the inherent level as
the optimal degree of constriction. By constricting the
aortic lumen in light of pulsatility index change, aneurysmal
degeneration invariably developed in our experimental
groups.

Finally, moderate coarctation can transform the local
AA into an angled or distorted curve flow path, which
downstream will produce an asymmetric velocity profile.
Biomechanical ex vivo studies revealed that flow asymmetry
may affect the distribution of wall stress and induce
secondary flow and subsequently influence wall remodeling
of AAA*® Our experimental findings, such as uneven
distribution of VSMC disarray and focal intimal thickening
in aneurysmal walls, provided in vivo evidence supporting
these postulations. In addition, we applied a compliant
ePTFE band to conduct aortic coarctation; consequently,
the modeled inlet was an asymmetric inflow channel
instead of a stenotic entrance as reported previously.'® As
observed by duplex ultrasound scanning, it was surprising
to note that immediately after coarctation, the lumen diam-
eter of the constrictive AA region was highly variable and in
some cases decreased little compared with that of the non-
constrictive AA region, even with 65% reduction of PI
(Fig 2). Based on this result, we propose that the severity
of downstream AA pathology is determined mainly by
the effect of coarctation on the flow profile instead of
lumen size. Meanwhile, asymmetric inflow channel simu-
lating angulated AAA necks commonly encountered in
the clinical setting also is consistent with this model.

CONCLUSIONS

Sustained moderate coarctation for 12w caused
regional hemodynamic stress on the terminal AA and
induced genuine degenerative AAA in swine. This large
animal model of AAA provides a platform for both patho-
genesis investigations and translational research.
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APPENDIX (online only)

METHODS

Gelatin zymography. Gelatinases were extracted
according to a previously published method.' Briefly,
tissue chunks of the distal abdominal aorta (AA) segment
were powdered in liquid nitrogen. Samples were homoge-
nized and extracted twice in TNC buffer (50 mmol /L Tris
base, 150 mmol /L NaCl, 10 mmol /L CaCl,, 0.05% Brij 35,
and 0.02% NaNg3), twice in TNC buffer containing 2%
dimethyl sulfoxide, and once in TNC buffer containing 10
M urea. Tissue homogenates (30 g of protein) were sepa-
rated with sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis containing 0.1% gelatin under nonreducing
condition at 4°C. Gels were renatured, developed for 16
hours at 37 °C, stained with Coomassie blue, and destained
until clear bands were detected. Gelatinolytic activity was
analyzed with densitometry.

A

Suprarenal AA

@
i

N o

Elastin (% area)

-
I

o
b

Sham 4w 8w 12w

]
=1
;

-
@
i

Collagen (% area)
e 3

o
b

Sham 4w 8w 12w

Sham 4w 8w 12w

JOURNAL OF VASCULAR SURGERY
March 2013

RESULTS

Structural changes in the suprarenal and distal AA
segments during AAA formation. No significant change
in elastic lamella density was detected in the suprarenal and
proximal AA segments (Appendix Fig, A and B, online
only). No changes in collagen fiber density and distribution
were detected in the suprarenal and proximal AA segments
throughout the 12-week postcoarctation period compared
with sham control (Appendix Fig, C and D, online only).
The nuclear density in the media did not change markedly
in the suprarenal and proximal AA segments, with the
exception of the proximal AA at 4 weeks postcoarctation
(Appendix Fig, E and F, online only).
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Appendix Fig (online only). Structural features of the suprarenal and proximal abdominal aortic segments following
coarctation. Cross sections of the suprarenal (A, C, E) and proximal abdominal aorta (AA4) (B, D, F) segments were
stained for elastic fibers (A and B), collagen fibers (C and D), and smooth muscle-specific ot-actin (SMA) and nucleus
(E and F). The percent area of elastic fibers and collagen fibers was analyzed in four sections with four fields per section
as described in the Methods. Results were presented as mean =+ standard error of the mean (elastic staining, n = 3~9;
collagen staining, n = 3~4). The SMA-positive area was used to define the media, and the number of nuclei in five or
six fields of the media was counted. Nuclear density was calculated and presented as mean = standard error of the mean

(n = 3~8).



